Luke Kulm

Email: lbk73@cornell.edu Portfolio: https://lukekulm.github.io/my-website/ Linkedin: https://www.linkedin.com/in/luke-kulm/

EDUCATION

Cornell University, College of Engineering, Ithaca, NY

B.S. in Computer Science - GPA 3.7

Relevant Coursework: Machine Learning, Special Topics in Machine Learning, Analysis of Algorithms, Foundations of Robotics, Computer Vision, Large Language Models, Systems Programming

EXPERIENCE

Yrikka, New York, NY | Machine Learning Engineering Intern

- Developed a pipeline to evaluate multimodal LLMs on robustness and accuracy for medical diagnosis
- Used agentic workflows, deep learning techniques, and vector databases for evaluation
- Utilized adversarial attacks to test the robustness of image embedding models

Cornell University, Ithaca, NY | *Teaching Assistant - CS 4782: Deep Learning* Winter 2024 - Spring 2024

- Constructed and modified programming assignments using PyTorch and data analysis techniques across topics such as GANs, Vision Transformers, and Reinforcement learning
- Assisted students with concepts across deep learning development and theory

Emprise Robotics Lab, Ithaca, NY | Undergraduate Researcher

- Utilized prompt engineering to integrate GPT-4 into a robotic planning system for autonomous food peeling
- Implemented Python-based machine learning techniques to classify video, audio, and haptic data
- Employed ROS and Linux to orchestrate data acquisition and robot control; rapid prototyping with Arduino and CAD technology to fabricate a vegetable peeler for robot and human use

PROGRAMMING LANGUAGES & TOOLS

Languages/Packages: Python, PyTorch, C/C++, Java, Ocaml, ROS, HTML/CSS Tools/Technologies: Github, Linux, AWS, GCP, VSCode, Fusion360, LaTeX

PUBLICATIONS & PROJECTS

MORPHeus: a Multimodal One-armed Robot-assisted Peeling system	
w/ Human Users in-the-loop (ICRA 2024)	Fall 2023
• Employed ROS, Python, Pytorch, Linux, CAD, and GPT-4 to create an autonomous	
food peeling system with a robot arm, natural language, and multimodal perception	
• Collaborated closely with a professor, and three students to produce an academic research paper	
Adversarial Robustness of I-JEPA	Fall 2024
• Tested the adversarial robustness of Meta's I-JEPA to verify its strength in embedding images	
• Authored a technical blog post explaining the methodology and theory behind the technologies	
Cornell's First Deep Learning Class for Undergraduates	Fall 2023
• Created curriculum and course content for Cornell's first undergraduate course on deep learning	
• Constructed programming and homework assignments on deep reinforcement learning	
Optimizing RL Agents for Poker with Supervised Fine-Tuning (In Progress)	Fall 2024
• Combined deep learning frameworks like PyTorch to improve agent behavior in Texas Hold'em	
BrainRobotConnect (TreeHacks 2024) Sp	pring 2024
• Created a robotic pipeline that utilized brain signals for robotic control using	
signal processing, data analysis techniques, and Boston Dynamics' Spot	

Spring 2025

Spring 2023 - Summer 2024

Summer 2024 - Fall 2024